

South Carolina Public Service Commission

January 31, 2018

Topics we will cover today

- The Importance and Types of Procurement
- Procurement Methods
- Best Practices in Procurement
- Comparing Procurement Methods
- Auction Method Results
- Benefits

Procurement is Vitally Important

High Stakes

Individual transactions can easily exceed \$100M in spend for utilities – getting the best price is crucial

High Risk

Balance complexities: regulatory, transactional, market timing, stakeholder perception, and opportunity cost

High Visibility

Multiple stakeholders including shareholders, legislative & regulatory bodies, and customer advocacy groups

Typical Utility Transaction Types

Utilities provide natural gas by:

- Owning upstream resources
 - e.g., wellhead, liquefaction
- Long-term gas supply contracts
 - e.g., 10-20 years, Elba LNG
- Short-term gas supply contracts/bilateral trades/options (< 5yrs)
 - Exchange (e.g., ICE)
 - 1-v-1 communication (e.g., email)
- Daily/spot natural gas purchases for uncovered volumes

Utilities provide power by:

- Owned Generation/asset acquisitions
- Long-term purchased power
 - Unit Specific
 - Portfolio
- Bilateral power contracts/bilateral trades/options (< 5 years)
 - Exchange (e.g., ICE)
 - 1-v-1 communication (e.g., email)
- Day-ahead & spot purchases

Evolution of Procurement Methods

Sealed Bid

- One-time, private submittal of "best-&final" bid in advance of deadline
- Bidders submit what they think will be accepted, not what they can afford

Multiple-Round, Descending Clock Auction

- Multiple rounds of sealed bids; price drops in each subsequent round
- Price is fixed;
 Volume is bid
- All bidders secure price at market point of <u>least-</u> <u>competitive</u> supplier

Live, Online, Reverse Auction

- ► Generates intense competitive bidding for each product against a hard-stop timeline
- ► Bidders can see each others' prices and continuously compete to win
- Achieves lowest possible prices

Pre-Internet Technology

Used in RTO Capacity Procurement

State of the Art

11:00 AM

Symptoms of Imperfect Procurements

- Hardly any suppliers bidding
- Hard to evaluate / subjective / inconsistent
- Data Integrity Concerns
- High Cost to Administer
- Bidder Fatigue
- Irregularities, Unwarranted Perceptions
- No or few opportunities for competition to drive to best price

Characteristics of Optimized Procurements

- Easy to Bid
- ✓ Instantaneous bidding
- Easy to Evaluate & Decide

Efficient

- Able to see best price so far,
 & reduce further and further
- Highly Secure and Strong Data Integrity

Price Discovery

- Transparency and reporting
- ✓ Highly Auditable

Documen Scrutiny

Intense

Bids

✓ More CompetitionCompetition& Outlier

2018

11:00 AM

Yield Positive Outcomes

Lower Ratepayer Cost

- Transacting & executing quickly yields lower premiums.
- Focused supplier attention in a 10-minute bidding session increases liquidity & competition in a
- Maximum competition using interactive bidding

Increase Transparency

- Bidders see current low bid and can rebid to pull ahead, win business.
- Utilities watch the bidding unfold live and monitor bidding activity

Deliver Immediate Documentation of Auction Results

Fully auditable, with immediate access to auction process & outcomes. Commissions & staff, & internal utility teams, can review for fairness and compliance.

Comparing Benefits of Evolving Procurement Methods

	Price Discovery	Speed / Efficiency	Bid Improvement	Best Price for Ratepayer
Sealed Bid	×	×	One Bid Only	Good
Descending Clock Auction	√	×	√ √	Better
On-line, Live Reverse Auction	√√√	√√√	√√√	Best

Live Reverse Auctions Drive Competition

High number of bidders and constant price discovery reduces costs to ratepayers

Auction Information

Auction Start Time: 4/19/2017 11:10:00 AM EPT Auction End Time: 4/19/2017 11:20:00 AM EPT Total Quantity: 500,000 MMBtu/day pening Bid (\$/MMBtu): 0.05000

Total Quantity: 500,000 ft
Opening Bid (\$/MMBtu): 0.05000
Reserve Price (\$/MMBtu): N/A
Reserve Status: N/A

RFP Status: Closed: Awarded
Time Left: auction Ended
Total Bid 33 Unique Bidders: 13
Low Bid (\$/MMBtu): 92500

Price Graph

Live Reverse Auctions Drive Competition

With last bid blind, winning bidder outbids themselves 20% of the time as the lowest bid

	Bid History				
6 – Final Bid ———	Company Name	Bid Amount	Bid Quantity	Date and Time of Bid	
5 & 6 – Last Bid Blind	Bidder A	(\$0.01250)	10,000	4/19/2017 10:59:44	
	Bidder A	(\$0.01000)	5,000	4/19/2017 10:59:32	
	Bidder B	(\$0.00500)	5,000	4/19/2017 10:59:10	
	Bidder A	(\$0.00250)	10,000	4/19/2017 10:56:17	
4 – "midway" bid→	Bidder C	\$0.00000	30,000	4/19/2017 10:52:57	
	Bidder D	\$0.00000	10,000	4/19/2017 10:57:27	
	Bidder B	\$0.00000	10,000	4/19/2017 10:55:54	
	Bidder A	\$0.00500	10,000	4/19/2017 10:55:49	
	Bidder E	\$0.00850	10,000	4/19/2017 10:54:04	
	Bidder F	\$0.01000	20,000	4/19/2017 10:55:31	
	Bidder D	\$0.01000	10,000	4/19/2017 10:57:04	
	Bidder E	\$0.01100	20,000	4/19/2017 10:53:24	
2 & 3 – testing waters; improves own bid	Bidder A	\$0.01250	10,000	4/19/2017 10:55:14	
	Bidder A	\$0.02000	10,000	4/19/2017 10:54:31	
	Bidder G	\$0.02000	10,000	4/19/2017 10:54:34	
	Bidder F	\$0.03000	20,000	4/19/2017 10:52:37	
	Bidder E	\$0.03000	20,000	4/19/2017 10:51:33	
	Bidder D	\$0.03000	10,000	4/19/2017 10:51:53	
1 – Opening Bid →	Bidder A	\$0.03000	10,000	4/19/2017 10:53:33	
1 9	Bidder H	\$0.03000	5,000	4/19/2017 10:56:21	

And Competition Means Large Ratepayer Savings

Final bids are below utility's "transactable" price, leading to ~\$500,000 in savings in this example

	1. 7x24 ATC Q1 '18	2. 7x24 ATC 2H '18	3. 5x16 On- Peak Cal 2018	4 7x24 ATC Cal 2018
Customer Target (\$/MWh)	\$40.00	\$32.03	\$39.60	\$33.81
Final Price (\$/MWh)	\$38.45	\$29.50	\$37.59	\$31.10
\$/MWH Difference	\$1.55	\$2.53	\$2.01	\$2.71
MWh's Procured	21,600	44,160	40,800	87,600
Potential Cost Avoidance	\$33,480	\$111,725	\$82,008	\$237,396

Extensive World Bank Study on Procurement Methods

- "Most of the energy auctions carried out as part of the first generation of power sector reforms have been designed as sealed-bid auctions...A clock auction enables an efficient price discovery, and is conducive to more aggressive behavior among bidders ...resulting in lower prices."
- *The World Bank studied the results of a Florida utility that used the anglo-dutch auction design: The practical usefulness of the auctions is best summarized by an official of the municipal utility who, after the first-time use of the auction to procure an electricity forward contract, observed that, 'the auction resulted in a savings of about 10 percent, compared with what the muni[cipal utility] normally pays ... the process worked tremendously for us. I see this as something that is going to catch on It's very good for competition. It's unmasking the prices and will save us between \$500,000 and \$1 million annually."

Source: http://documents.worldbank.org/curated/en/114141468265789259/pdf/638750PUB0Exto00Box0361531B0PUBLIC0.pdf

Benefits of Modernizing Procurement

Transparency

- Drives competition and <u>ensures competitive & prudent rates</u>, with optimal procurement outcomes.
- Contributes heavily to lesser-informed stakeholders' understanding markets and products

Robust competition

- Ensures <u>best market price</u>
- Contributes to keeping utility operating costs and risks low

Strong auction models reinforce markets' growth and new products being developed

Contributes to utility's ability to optimize portfolio and manage risk in rapidly evolving landscape

Preferred auction engagement

- Has <u>no-risk model</u>, with no transaction being forced, to minimize utility risk and cost
- Integrates to <u>optimize the "bid-getting" piece</u> of utility's procurement process
- Start with open price discovery, and end with best and final "sealed bid" offer

Raphael Herz

Wholesale Procurement Sales Manager 617-997-1884 Raphael.Herz@enernoc.com

Alexander Houghtaling

Wholesale & Government Procurement Director 617-990-2482 ahoughtaling@enernoc.com

